ENG

Перейти в Дзен
Мнение, Технологии

Перспективы прикладного применения геномики

Анна Кудрявцева

Анна Кудрявцева

Кандидат биологических наук, заместитель директора по научной работе Института молекулярной биологии им. В. А. Энгельгардта Российской академии наук (ИМБ РАН), заведующая лабораторией постгеномных исследований, руководитель ЦКП «Геном» ИМБ РАН

Геномика — молодое, динамично развивающееся направление в области наук о жизни. Что же в нем удивительного и чем геномика отличается от генетики? А тем, что объектом исследования является совокупность всего генетического материала, заключенного в клетке организма, — то есть геном. В большинстве случаев он построен из молекул ДНК. Исключение составляют вирусы, но они не являются клеточными формами жизни.

Фото: depositphotos.com
Фото: depositphotos.com

Несмотря на огромное количество научных работ, посвященных организации и функционированию генома у разных групп организмов, мы делаем лишь первые шаги на пути к пониманию этого сложнейшего вопроса. Отчасти ситуацию объясняет то, что существующие методы исследований просто не позволяют продвинуться дальше и узнать больше. Мы можем положить еще один кирпичик в нашу базу знаний о геноме, только если на рынок выходит концептуально новый прибор или существенно улучшаются характеристики уже применяемых технологий.

Пока геномика таит в себе немало загадок, однако за ними скрываются и огромные перспективы для решения самых разнообразных прикладных задач. Рассмотрим основные области нашей жизни, где она уже активно применяется

Сельское хозяйство

Основным направлением является получение пород животных и сортов растений с хозяйственно ценными свойствами. Сейчас методы классической селекции отходят на второй план. Всё больше входит в практику ускоренная селекция по генетическим признакам. Как это делается? На первом этапе проводят геномное секвенирование, то есть расшифровку последовательности ДНК, для большого количества организмов с максимально широким спектром признаков. Затем эти огромные массивы данных попадают в руки биоинформатиков, они ищут ассоциации между особенностями генома и конкретными фенотипическими признаками, например устойчивостью растения к патогенам или пониженным температурам. В результате ученые селекционеры получают сведения о маркерных точках, на основе которых эффективно подбирают пары для дальнейшего скрещивания и разведения.

Экология и эволюция

Для мониторинга состояния окружающей среды и её защиты наиболее эффективным методом геномики является динамический анализ состава микробиоты в различных местообитаниях. Обычно в анализе учитывают бактерии, грибы и археи, формирующие вместе так называемый консорциум микроорганизмов. Для каждой конкретной задачи можно использовать альтернативный дизайн экспериментов, однако все они сводятся в конечном итоге к получению перечня микроорганизмов (уровень вида или группы более высокого ранга). Уточняется доля в сообществе для каждого таксона, также могут быть приведены количественные показатели представленности каждого таксона в абсолютной шкале. Для анализа используются высокопроизводительные геномные секвенаторы — приборы, позволяющие получать относительно длинные и высококачественные «прочтения». Расшифровка ДНК происходит в режиме парноконцевых «прочтений», каждое из которых состоит из 150–300 нуклеотидов.

Исследования консорциумов микроорганизмов играет важнейшую роль в развитии биологических способов очистки окружающей среды от биогенных загрязнений, то есть тех, которые произошли вследствие деятельности человека. Особая роль отводится использованию микроорганизмов для очистки сточных вод на специальных очистных сооружениях. Состав сточных вод может сильно различаться. Причем для того, чтобы из опасных компонентов получить безопасные для природы соединения, зачастую требуются различные виды микроорганизмов. По качественному и количественному составу консорциума можно предсказать, во-первых, какие загрязнители (ксенобиотики) может переработать исследуемое очистное сооружение, а какие нет, а во-вторых, можно предсказать, сколько дней сточные воды определенного состава должны находиться в зоне очистки, чтобы полностью соответствовать санитарным нормам.

Очень похожая ситуация наблюдается при биоремедиации — восстановлении почв после загрязнения, главным образом диоксинами. Одним из способов очистки является создание коллекции микроорганизмов, специфично разлагающих типичные вещества-загрязнители. Далее получают биомассу в промышленных масштабах и затем вносят ее на загрязненные территории. Метод очень многообещающий, однако существуют и методические сложности, которые на сегодняшний день пока еще не удалось преодолеть. Основная проблема хорошо знакома каждому — даже самые полезные штаммы микроорганизмов, но чужие для нашего индивидуального кишечного консорциума микроорганизмов, не приживаются в нем. Новички не становятся родными для сообщества, вскоре они полностью вытесняются естественной микрофлорой.

Для любого местообитания, любого биотопа можно проводить регулярный мониторинг состава сообщества микроорганизмов. Высокопроизводительное секвенирование образцов для анализа метагенома (совокупности генетического материала микроорганизмов) позволяет контролировать экологическое состояние объекта. Дело в том, что изменение химического состава субстрата неминуемо вызывает изменения бактериального состава; геномное секвенирование позволяет выявить изменения с высокой точностью.

Изучение геномов живых организмов может быть весьма ценным инструментом при попытке воссоздать ход истории, то есть при построении филогенетического древа. По сути, это способ организовать систематику живых существ таким образом, чтобы она отражала естественные эволюционные процессы.

Биомедицина

Это сейчас самая актуальная и востребованная область применения геномики. Современная концепция здравоохранения постулирует необходимость применения модели четырех П (4П-медицина), которая интегрирует в себе понятия персонализации (индивидуальный подход к каждому пациенту), предикции (выявление предрасположенности к развитию заболевания), превентивности (предотвращении появления заболеваний), партисипативности (мотивированного участия пациента). Достижения геномики, наряду с другими «омиксными» технологиями, являются базисом для реализации этой модели. Перечислю кратко основные перспективные области применения достижений геномики в биомедицине. Каждое из них заслуживает отдельного подробного рассказа — читайте об этом в наших следующих выпусках. Несколько областей применения можно объединить, как способы диагностики наследственных заболеваний, состояний и предрасположенностей. Можно ожидать прорывных результатов по мере создания во всем мире центров хранения и обработки генетической информации, особенно при появлении возможности объединять и совместно анализировать данные разных стран. Крайне важно, чтобы в анализ включали геномы людей с качественным и подробным описанием клинической картины. Анализ генома эмбрионов перед подсадкой в организм матери в рамках процедуры ЭКО уже сейчас позволяет эффективно предотвращать тяжелые моногенные заболевания и генетические синдромы.

Следующее направление вытекает из предыдущей группы, его можно обозначить как дизайн человека и профилактика наследственных заболеваний путем коррекции генома. По-видимому, рано или поздно человечество посчитает этически приемлемым вносить изменения в геном соматических клеток и даже корректировать весь организм целиком, обеспечивая наследуемость привнесенного изменения в ряду поколений. Однако ученые практически единогласны во мнении, что распространение таких технологий послужит мощным триггером для усиления социальной стратификации и дифференциации общества.

Важность диагностики нарушений, приобретенных организмом в процессе развития, а также анализа особенностей метаболизма и процессов передачи сигналов в клетках наиболее ярко проявляется в онкологии. Персонализированное лечение позволяет существенно увеличить ожидаемую продолжительность жизни, поскольку препараты назначают в зависимости от результатов теста.

Состав микробиоты кишечника, сформировавшись в виде «корового», то есть базового сообщества в первый месяц жизни ребенка, также может трансформироваться под действием различных веществ. Пока геномное секвенирование образцов кала не является медицинской услугой в строгом смысле этого понятия, однако уже сейчас данные по анализу метагенома используют в своей работе диетологи, предлагая скорректировать рацион пациентов таким образом, чтобы увеличить продолжительность активной жизни.

Можно с уверенностью утверждать, что перспективы практического применения геномики будут расширяться и дальше. Эта область, имеющая как фундаментальное, так и прикладное значения, очень важна в аспекте устойчивого развития государств. Однако обществу придется решить еще немало сложных биоэтических вопросов, прежде чем выкристаллизуется единый план действий, который позволит повысить качество жизни людей и продлить тот период, когда взрослый организм еще не ощущается как старый.

Следите за нашими новостями в удобном формате
Перейти в Дзен

Предыдущая статьяСледующая статья